

Tetrahedron Letters 41 (2000) 10223-10227

TETRAHEDRON LETTERS

Reaction of homoallylic alcohols with NaIO₄/NaHSO₃ reagent—synthesis of alkyl substituted tetrahydrofuran derivatives

Yoshio Okimoto, Daisuke Kikuchi, Satoshi Sakaguchi and Yasutaka Ishii*

Department of Applied Chemistry, Faculty of Engineering & High Technology Research Center, Kansai University, Suita, Osaka 564-8680, Japan

Received 28 August 2000; revised 2 October 2000; accepted 12 October 2000

Abstract

Treatment of homoallylic alcohols with $NaIO_4/NaHSO_3$ reagent in aqueous *t*-BuOH under mild conditions produced tetrahydrofuran derivatives together with iodohydrins in a stereospecific manner. The reaction pathways of the formation of tetrahydrofurans from *trans*- and *cis*-homoallylic alcohols were found to be different. The present method provides a new approach to various alkylated tetrahydrofuran derivatives. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: tetrahydrofuran; homoallylic alcohols; iodohydrins.

The tetrahydrofuran moiety is a constituent of a number of natural products and antibiotics.¹ Although several methods have been developed for the synthesis of tetrahydrofurans,² it is important to synthesize these compounds in a stereoselective way. Most reports on the synthesis of tetrahydrofurans from homoallylic alcohols involve iodine as a reagent and the reactions are carried out in the dark and without any water present.^{2a-c}

Previously, we reported that $NaIO_4$ combined with an appropriate reducing agent such as $NaHSO_3$ ($NaIO_4/NaHSO_3$ reagent) generates in situ hypoiodous acid (IOH) and serves as an effective iodohydroxylation agent of alkenes.³ In the course of our study to extend the scope of the $NaIO_4/NaHSO_3$ reagent in organic synthesis, we have found that this reagent can be applied to the stereoselective synthesis of tetrahydrofuran derivatives from homoallylic alcohols under mild conditions.

A typical reaction was carried out as follows: To a solution of *trans*-3-hexen-1-ol (1a) (3 mmol) and NaIO₄ (3.6 mmol) in a mixed solvent of *t*-BuOH (18 ml) and H₂O (6 ml) was added dropwise an aqueous solution (14 ml) of NaHSO₃ (7.2 mmol) over a period of ca. 30 min at

^{*} Corresponding author.

^{0040-4039/00/\$ -} see front matter @ 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)01819-0

 50° C, and then the mixture was stirred at that temperature for 5 h. Reaction products were extracted three times with ethyl acetate, washed with aqueous Na₂S₂O₃ and dried over MgSO₄. After removal of the solvents in vacuo, products were isolated by column chromatography (silica gel, hexane:ethyl acetate = 10:1).

Table 1 shows the results for the reaction of various homoallylic alcohols with NaIO₄/NaHSO₃ reagent. The reaction of **1a** afforded *trans*-3-iodo-2-ethyltetrahydrofuran (**2a**) and *anti*-3-iodohexane-1,4-diol (**3a**) along with small amounts of unidentified polymeric products (Run 1). The structure of **2a** was determined by comparing its spectral data with that of literature values.⁴ The reaction in CH₃CN gave almost the same results as that in *t*-BuOH (Run 2). The reaction in hexane afforded **2a** in 68% yield (Run 3). NaIO₃ and H₅IO₆ could also be used instead of NaIO₄ (Runs 4 and 5). On the other hand, *cis*-3-hexen-1-ol (**1b**) reacted with the NaIO₄/NaHSO₃ reagent under the same conditions as Run 1 to give *trans*-2-ethyl-3-hydroxy-tetrahydrofuran (**2b**) and *syn*-3-iodohexane-1,4-diol (**3b**) (Run 6). In contrast to **1a** having *trans* geometry where the furan **2a** was formed in preference to the iodohydrin **3a**, **1b** having *cis* geometry afforded preferentially iodohydrin **3b** rather than furan **2b**. Similarly, *cis*-3-nonen-1-ol (**1c**) gave *trans*-3-hydroxy-2-pentyltetrahydrofuran (**2c**) and *syn*-3-iodononene-1,4-diol (**3c**) in 55 and 40% yields, respectively (Run 8).

It is worth noting that these reactions took place in a stereospecific manner to form the corresponding furans and iodohydrins which subsequently undergo intramolecular cyclization to give rise to tetrahydrofurans. Scheme 1 shows plausible reaction paths for the formation of tetrahydrofurans 2a and 2b from 1a and 1b.

It is probable that the reaction is initiated by the attack of IOH generated from NaIO₄/NaHSO₃ reagent to the double bonds of **1a** and **1b** to afford the corresponding iodonium ion intermediates **A** and **B**, respectively. The formation of iodotetrahydrofuran **2a** from **1a** implies that the intramolecular cyclization of the iodonium ion **A** occurs in preference to the attack of a nucleophile like H_2O to the **A**. On the other hand, from **1b** having *cis* geometry, the hydroxytetrahydrofuran **2b** but not iodotetrahydrofuran was formed along with iodohydrin **3b**. This finding suggests that the attack of water to the iodonium ion intermediate **B** takes place in preference to the intramolecular cyclization of the **B** to form a mixture of **3b** and **3b**' which then cyclizes to **2b**. This may be due to the difficulty of the intramolecular cyclization of the hydroxy moiety to the *cis* iodonium ion intermediate **B** in comparison with the *trans* one **A**.

On the other hand, the reaction of homoallylic alcohol having a terminal double bond such as 4,4-dimethyl-1-hexen-4-ol (1d) with the NaIO₄/NaHSO₃ reagent resulted in 2-*tert*-butyl-4-hydroxytetrahydrofuran (2d) in 45% yield consisting of an approximate 1:1 stereoisomeric mixture. From 1-allyl-1-cyclohexanol (1e), spiro hydroxytetrahydrofuran derivative (2e) was obtained in 60% yield.

(+)-Terpinen-4-ol (1f) reacted with the NaIO₄/NaHSO₃ reagent to form *endo*-2-iodo-4-isopropenyl-1-methyl-7-oxabicyclo[2.2.1]heptane (2f) in 60% yield. Takahashi et al. reported that the photoreaction of 1f with iodine (1.5 equiv.) in the presence of HgO (1.5 equiv.) leads to the 2f.⁵ Although a tetrahydropyran derivative was expected to be formed from 4-hexen-1-ol (1g), tetrahydrofuran derivative, 2-(1-iodoethyl)tetrahydrofuran (2g),⁶ was formed. This indicates that the intramolecular cyclization of an iodonium ion intermediate generated in situ from 1g takes place in preference to the attack of water leading to the corresponding iodohydrin 3g. Similarly, the reaction of 5-hexen-1-ol (1h) with NaIO₄/NaHSO₃ gave 2-(1-iodomethyl)tetrahydropyran (2h)⁷ as a major product along with small amounts of iodohydrins, 6-iodohexane-1,5-diol (3h) and 5-iodohexane-1,6-diol (3h').

Table 1 Reaction of homoallylic alcohols and other alkenyl alcohols with $NaIO_4/NaHSO_3$ reagent^{a)}

Run	Substrate	Solv.	Conv. / %	Product (Yield / %) ^{b)}
1	1a OH	<i>t</i> -BuOH	85	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$
2	1a	CH ₃ CN	89	2a (61) 3a (3)
3	1a	<i>n</i> -C ₆ H ₁₄	94	2a (68) 3a (5)
4 ^{c)}	1a	<i>n</i> -C ₆ H ₁₄	99	2a (66) 3a (<1)
5 ^{d)}	1a	t-BuOH	86	2a (59) 3a (6)
6	∽=∽_ _{OH} 1b	t-BuOH	99	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\$
7 ^{c)}	1b	<i>n</i> -C ₆ H ₁₄	96	2b (31) 3b (35)
8	ⁿ Pen OH	<i>t</i> -BuOH	99	O Pen (55) Pen (40) OH OH OH 2c 3c
9	OH 1d	CH₃CN	99	2d (45) $(4$
10	OH 1e	CH3CN	99	OH OH 2e (60) OH I (<5)
11	он 1f	CH₃CN	93	(60)
12	∕────OH 1g	CH₃CN	87	2g (63)
13	∕∕∕OH 1h	CH₃CN	83	$\begin{array}{c} OH \\ I \longrightarrow OH \\ OH \\ HO \longrightarrow OH \\ 2h \\ HO \longrightarrow OH \\ 3h' \end{array} (19)$

a) Substrate was added to the aqueous solution of organic solvent containing 1.1 or 1.2 equiv. of NaIO₄ followed by 2.2 or 2.4 equiv. of aqueous NaHSO₃ solution which was dropped slowly with a separatory funnel while stirring vigorously. b) Determined by GLC. c) NaIO₃ was used instead of NaIO₄. d) H_5IO_6 was used instead of NaIO₄.

Scheme 1. Plausible reaction paths for reactions of 1a and 1b with NaIO₄/NaHSO₃

It is important to convert the resulting iodohydrins into tetrahydrofuran derivatives. Hence the *syn*-3-iodohexane-1,4-diol **3b** was treated with tosylchloride in pyridine at room temperature for 5 min to give *cis*-2-ethyl-3-iodotetrahydrofuran (4)⁴ in good yield (Eq. (1)). Thus, *cis*-homoallylic alcohol can also be converted into *cis* tetrahydrofuran derivative **4**.

In conclusion, we have extended the synthetic utility of the $NaIO_4/NaHSO_3$ reagent which generates hypoiodous acid 'IOH' in aqueous solution. The present reaction provides an alternative approach to tetrahydrofuran derivatives from homoallylic alcohols in a stereospecific manner under mild conditions.

Spectral data: **2b**: $\delta_{\rm H}$ 0.98 (t, 3H, J=7.3 Hz), 1.51 (two qd-like, 2H, J=7.3 Hz), 1.80 (brs, 1H), 1.83–1.89 (m, 1H), 2.08–2.17 (m, 1H), 3.63 (td-like, 1H, J=2.9, 6.6 Hz), 3.91–3.95 (m, 2H), 4.09 (dt-like, 1H, J=2.9, 6.2 Hz); $\delta_{\rm C}$ 10.2, 26.4, 35.2, 66.1, 75.9, 87.8; IR 3380, 2963, 2963, 2928, 2877, 1682, 1462, 1096, 1059 cm⁻¹. **2c**: $\delta_{\rm H}$ 0.82 (t, 3H, J=6.6 Hz), 1.18–1.42 (m, 8H), 1.78 (ddd-like, 1H, J=2.9, 4.0, 6.2, 12.8 Hz), 2.04 (dddd-like, 1H, J=6.2 Hz), 2.43 (brs, 1H), 3.61 (ddd-like, 1H, J=2.9 Hz), 3.80–3.89 (m, 2H), 3.98 (ddd-like, 1H, J=2.9, 2.9, 6.6 Hz); IR 3387, 2930, 2859, 1466, 1099, 993 cm⁻¹. **2d**: $\delta_{\rm H}$ 0.89 (s, 9H), 1.73–1.85 (m, 2H), 2.14 (brs, 1H), 3.74 (ddd-like, 1H, J=1.5, 1.5, 9.6 Hz), 3.88 (dd, 1H, J=4.0, 9.9 Hz), 3.91 (dd, 1H, J=6.4, 9.9 Hz),

4.47 (br-dd-like, 1H); $\delta_{\rm C}$ 25.6, 33.6, 36.1, 72.8, 75.8, 85.9; IR 3385, 2955, 2869, 1458, 1364, 1062, 984 cm⁻¹; (another isomer) $\delta_{\rm H}$ 0.93 (s, 9H), 1.56–1.64 (m, 1H), 2.16 (ddd-like, 1H, *J*=7.3, 7.3, 14.7 Hz), 3.50 (dd-like, 1H, *J*=7.7, 8.4 Hz), 3.66 (dd, 1H, *J*=4.4, 9.9 Hz), 3.79 (ddd-like, 1H, *J*=1.5, 2.2, 9.9 Hz), 4.41 (m, 1H); $\delta_{\rm C}$ 25.7, 33.2, 36.6, 72.2, 75.3, 87.1; IR 3389, 2926, 2855, 1470, 1366, 1059 cm⁻¹. **2e**: $\delta_{\rm H}$ 1.26–2.18 (m, 11H), 1.95 (dd, 1H, *J*=6.6, 13.6 Hz), 2.10 (brs, 1H), 3.78 (dd, 1H, *J*=3.7, 9.9 Hz), 3.90 (dd, 1H, *J*=4.4, 9.9 Hz), 4.43–4.47 (m, 1H); $\delta_{\rm C}$ 23.5, 23.8, 25.4, 37.1, 38.1, 46.0, 72.9, 73.4, 82.7; IR 3417, 2931, 2856, 1447, 1062 cm⁻¹. **3b**: $\delta_{\rm H}$ 0.98 (t, 3H, *J*=7.3 Hz), 1.53–1.70 (m, 2H), 2.05–2.26 (m, 2H), 2.13 (brs, 1H), 2.20 (brs, 1H), 2.78 (ddd-like, 1H, *J*=2.2, 5.5, 7.7 Hz), 3.78 (ddd-like, 1H, *J*=4.4, 7.7, 11.0 Hz), 3.90 (ddd-like, 1H, *J*=5.1, 5.3, 11.0 Hz), 4.47 (ddd-like, 1H, *J*=2.2, 5.1, 8.1 Hz); $\delta_{\rm C}$ 10.0, 31.2, 40.3, 45.0, 62.0, 75.6; IR 3354, 2962, 2933, 2877, 1461, 1119, 1049, 961 cm⁻¹. **3c**: $\delta_{\rm H}$ 0.90 (t, 3H, *J*=6.4 Hz), 1.26–1.62 (m, 8H), 2.07–2.25 (m, 2H), 2.37 (brs, 2H), 2.87 (br, 1H), 3.74–4.07 (m, 2H), 4.45 (ddd, 1H, *J*=2.2, 5.1, 8.1 Hz); $\delta_{\rm C}$ 14.0, 22.5, 25.2, 31.6, 38.1, 40.2, 45.5, 62.0, 74.2; IR 3354, 2932, 2869, 1704, 1464, 1050, 653 cm⁻¹.

References

- (a) Bartlett, P. A. *Tetrahedron* 1980, *36*, 2–72. (b) Ireland, R. E.; Anderson, R. C.; Badoud, R.; Fitzsimmons, B. J.; McGarvey, G. J.; Thaisrivongs, S.; Wilcox, C. S. *J. Am. Chem. Soc.* 1983, *105*, 1988–2006.
- (a) Williams, D. R.; White, F. H. *Tetrahedron Lett.* 1986, 27, 2195–2198. (b) Bedford, S. B.; Bell, K. E.; Fenton, G.; Hayes, C. J.; Knight, D. W.; Shaw, D. *Tetrahedron Lett.* 1992, 33, 6511–6514. (c) Barks, J. M.; Knight, D. W. *Tetrahedron Lett.* 1994, 35, 7259–7262. (d) Lipshutz, B. H.; Barton, J. C. J. Am. Chem. Soc. 1992, 114, 1084–1086. (e) Mihelech, E. D.; Hite, G. A. J. Am. Chem. Soc. 1992, 114, 7318–7319.
- 3. Masuda, H.; Takase, K.; Nishio, M.; Hasegawa, A.; Nishiyama, Y.; Ishii, Y. J. Org. Chem. 1994, 59, 5550–5555.
- Bedford, S. B.; Bell, K. E.; Bennnett, F.; Hayes, C. J.; Knight, D. W.; Shaw, D. E. J. Chem. Soc., Perkin Trans. 1 1999, 2143–2153.
- 5. Takahashi, H.; Ito, M. Chem. Lett. 1979, 373-374.
- 6. Srebnik, M.; Mechoulam, R. J. Chem. Soc., Chem. Commun. 1984, 1070-1071.
- 7. (a) Dolenc, D. Synlett 2000, 4, 544–546. (b) Gauthier, J. Y.; Guindon, Y. Tetrahedron Lett. 1987, 28, 5985–5988.